Decision-Making with Complex Data Structures using Probabilistic Programming
نویسندگان
چکیده
Existing decision–theoretic reasoning frameworks such as decision networks use simple data structures and processes. However, decisions are often made based on complex data structures, such as social networks and protein sequences, and rich processes involving those structures. We present a framework for representing decision problems with complex data structures using probabilistic programming, allowing probabilistic models to be created with programming language constructs such as data structures and control flow. We provide a way to use arbitrary data types with minimal effort from the user, and an approximate decision–making algorithm that is effective even when the information space is very large or infinite. Experimental results show our algorithm working on problems with very large infor-
منابع مشابه
Target setting in the process of merging and restructuring of decision-making units using multiple objective linear programming
This paper presents a novel approach to achieving the goals of data envelopment analysis in the process of reconstruction and integration of decision-making units by using multiple objective linear programming. In this regard, first, we review inverse data envelopment analysis models for data reconstruction and integration. We present a model with multi-objective linear programming structure in...
متن کاملDesigning a new multi-objective fuzzy stochastic DEA model in a dynamic environment to estimate efficiency of decision making units (Case Study: An Iranian Petroleum Company)
This paper presents a new multi-objective fuzzy stochastic data envelopment analysis model (MOFS-DEA) under mean chance constraints and common weights to estimate the efficiency of decision making units for future financial periods of them. In the initial MOFS-DEA model, the outputs and inputs are characterized by random triangular fuzzy variables with normal distribution, in which ...
متن کاملA modification of probabilistic hesitant fuzzy sets and its application to multiple criteria decision making
Probabilistic hesitant fuzzy set (PHFS) is a fruitful concept that adds to hesitant fuzzy set (HFS) the term of probability which is able to retain more information than the usual HFS. Here, we demonstrate that the existing definitions of PHFS are not still reasonable, and therefore, we first improve the PHFS definition. By endowing the set and algebraic operations with a new re-definition of P...
متن کاملFinding Common Weights in Two-Stage Network DEA
In data envelopment analysis (DEA), mul-tiplier and envelopment CCR models eval-uate the decision-making units (DMUs) under optimal conditions. Therefore, the best prices are allocated to the inputs and outputs. Thus, if a given DMU was not efficient under optimal conditions, it would not be considered efficient by any other models. In the current study, using common weights in DEA, a number of...
متن کاملA DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing
One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1407.3208 شماره
صفحات -
تاریخ انتشار 2014